vit#
Available models#
ViT-based models:
vit_small_patch16_224()
vit_base_patch16_224()
vit_large_patch16_224()
DeiT-based models:
deit_small_patch16_224()
deit_base_patch16_224()
deit_tiny_distilled_patch16_224()
deit_small_distilled_patch16_224()
deit_base_distilled_patch16_224()
MAE-based models:
vit_mae_base_patch16_224()
vit_mae_large_patch16_224()
DINO-based models:
vit_dino_small_patch8_224()
vit_dino_small_patch16_224()
vit_dino_base_patch8_224()
vit_dino_base_patch16_224()
Initialization of above models:
- model(pretrained: bool = True, lrp: bool = False)#
Returns a ViT model.
- Parameters:
pretrained – (bool) - If True, returns a model pre-trained on ImageNet.
lrp – (bool) - If True, returns a model with Layer-wise Relevance Propagation (LRP) enabled.
Example:#
>>> from txv.vit import vit_base_patch16_224 >>> model = vit_base_patch16_224(pretrained=True) >>> model.eval()